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ABSTRACT
The detailed modelling of stellar oscillations is a powerful approach to characterising stars.
However, poor treatment of systematics in theoretical models leads to misinterpretations of
stars. Here we propose a more principled statistical treatment for the systematics to be applied to
fitting individual mode frequencies with a typical stellar model grid. We introduce a correlated
noise model based on a Gaussian Process (GP) kernel to describe the systematics given that
mode frequency systematics are expected to be highly correlated. We show that tuning the
GP kernel can reproduce general features of frequency variations for changing model input
physics and fundamental parameters. Fits with the correlated noise model better recover stellar
parameters than traditional methods which either ignore the systematics or treat them as
uncorrelated noise.
Key words: Star: Modelling – Star: Oscillation – Methods: Statistical

1 INTRODUCTION

One-dimension stellar models have been widely used for decades to
predict the structure, evolution, and oscillations of stars. Systematic
errors are expected because stellar models contain assumptions and
approximations (e.g., using the mixing-length theory to describe
the convection) which do not perfectly reflect the actual physics
in stars. In asteroseismic mode frequencies, the most well-known
systematic error is the so-called surface term, which appears as a
frequency offsets between observations and theoretical predictions
computed with the best-fitting structural model. The surface term
is caused by the poor modelling of near-surface layers of the star
(see details in Ball 2017), and it is a major source of error in theo-
retical mode frequencies (∼5𝜇Hz at oscillation frequency with the
largest amplitude, i.e., 𝜈max, for the Sun; Christensen-Dalsgaard
et al. 1996). Treatment of the surface term normally follows a de-
terministic approach with parameterisation based on the so-called
‘surface correction’ formulae (e.g. Kjeldsen et al. 2008; Ball &
Gizon 2014; Sonoi et al. 2015). Previous studies for the Kepler
LEGACY sample (Silva Aguirre et al. 2017; Lund et al. 2017)
showed that those correction formulae can give good fits to the
frequency offsets (Compton et al. 2018). This surface correction
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is expected to be a smooth function of the mode frequency and
some formulae also contain the mode inertia. Secondary systematic
errors are caused by other missing physics. As an example, stellar
magnetic activity, which is not included in most stellar codes, shifts
mode frequencies to a noticeable degree. For the Sun, which is an
aged and inactive G-type star, its frequencies of low angular degree
modes (ℓ ≤ 3) shift up to 0.5𝜇Hz during a solar cycle (Chaplin et al.
2007). Recent findings based on Kepler (Borucki et al. 2009) data
have shown even larger frequency shifting (up to ∼2𝜇Hz) in some
sun-like stars (Kiefer et al. 2017; Salabert et al. 2018). Howe et al.
(2017) notes that the impact of magnetic activity can be treated
as a part of the surface term. Parametrising the time variation of
the surface correction could be a way to account for the activity-
related frequency variation in solar-like oscillators. There are also
model errors that have not been well studied or properly treated
in modelling. For instance, Ge et al. (2015) stated that systematic
differences between observed and model frequencies would be ex-
pected for metal-poor stars if an incorrect 𝛼-enhancement value is
used in model computations.

In grid-based modelling, systematic uncertainty could also
undermine modelling solutions when the frequency resolution is
comparable to the observed uncertainty. Here we define the fre-
quency resolution as the difference between neighbouring points
of the model grid. For a seismic model grid, neighbouring points
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Figure 1. Systematic errors and uncertainties in theoretical mode frequen-
cies. Black filled circles are radial (ℓ = 0) mode frequencies of the Sun
observed by BiSON (Howe et al. 2017) . Open symbols represent mode
frequencies of three theoretical models with solar mean density but differ-
ent input masses: 𝑀 = 0.99, 1.00, and 1.01M⊙ . Note that the models have
the same input helium fraction (𝑌 = 0.26), metallicity ([Fe/H]= 0.0), and
mixing-length parameter (𝛼MLT = 2.1).

are those with consecutive fundamental inputs (mass, matellicity,
helium fraction, mixing-length parameter, etc.) and the same mean
density. We use the mean density to locate neighbouring points
because good-fitting models constrained by oscillation modes nor-
mally converge at a similar large separation (Δ𝜈), which tightly
correlates to the mean density (see Li et al. 2022). In Figure 1, we
demonstrate an example from sequential models of a model grid.
Here we take the 1M⊙ model at the solar mean density, and we
compare the model frequencies with its neighbouring grid points in
terms of mass (0.99M⊙ and 1.01M⊙ models with the closest mean
density). The mean frequency resolution is∼1𝜇Hz corresponding to
a mass step of 0.01M⊙ . This frequency resolution is larger than the
typical observed uncertainty of many well-studied solar-like oscilla-
tors(Appourchaux et al. 2012; Davies et al. 2016; Lund et al. 2017).
For instance, Li et al. (2020a) achieved an average uncertainty at
about 0.2𝜇Hz when measuring mode frequencies of 36 Kepler sub-
giants. This is to say, a sparse model grid could be significantly
under-sampled for fitting to observed oscillation frequencies.

Computing a fine model grid with a number of free model in-
puts is computationally expensive. Interpolating model frequencies
based on established model grids like AIMS (Rendle et al. 2019)
and BASTA (Aguirre Børsen-Koch et al. 2022) or using a simplex
method (e.g. the ‘simplex search’ function in MESA Astero Mod-
ule Paxton et al. 2015) are possible solutions to this issue. These
methods are statistically-sound but not efficient enough to apply to a
large sample of stars. A fast approach is homologously scaling mode
frequencies of a closely fitting model by a correction factor (𝑟) to
approximate a better fitting model (Kjeldsen et al. 2008). Scaling
the mode frequencies by 𝑟 changes the seismic large separation (Δ𝜈)
by the same ratio and changes the mean density by a factor 𝑟2. The
downside of this method is that the 𝑟-scale transformation is not
easily applied to other parameters, such as mass and age.

Traditional fitting strategies normally treat model systematics
as white noise. For example, Li et al. (2020b) adopted a uniform
white systematic noise when modelling the Kepler subgiants. The
scale of noise is determined by the average frequency difference
between the observation and the best-fitting model. This treatment
is too simple to properly describe the model systematic uncertainty
and hence leads to poorly measured uncertainties.

The goal of this work is developing a better statistical treat-
ment for systematics in model frequencies to improve the reliability
of detailed modelling based on a stellar model grid. We propose a
correlated noise model based on a Gaussian process (GP) kernel
(also known as the covariance function) to describe the systematics.
As a demonstration of the principle, we discuss the method with
radial modes only, but it is extendable to all acoustic modes and
also possibly to mixed modes. We introduce the underlying func-
tions of the correlated noise model and discuss the fitting procedure
in Section 2. We then apply the new fitting method to characterise
fake model star in Section 3 to examine whether fits with the corre-
lated noise model better recover the true stellar parameters. Lastly,
we close with some discussions about the new fitting method and
conclusions of the paper in Section 4.

2 METHOD

2.1 Model Systematic Function

2.1.1 Understanding model systematics

Understanding the systematics that affect the oscillation frequen-
cies in a stellar grid is the key to finding proper functional forms
with which to describe the model systematics. As seen in Figure
1, the model systematics can be described as a combination of two
components. The first is the frequency-dependent offset between the
best-fitting model and the observed frequencies. Instead of calling
it the surface term, we refer to it as the model systematic error (E)
to represent the systematics caused by all improper and missing
physics in a theoretical stellar model. We use a smooth functional
form, similar to a surface correction formulae, to model E.

The second component, as mentioned in Section 1, is the sys-
tematic uncertainty (U) caused by the frequency resolution of the
model grid. The detailed modelling uses global parameters (effec-
tive temperature, luminosity, metallicity, etc.) and individual mode
frequencies to characterise stars. Comparing the models in Figure
1 we observe that, at a given mean density, changing the mass by
a typical mass interval in a grid shifts the mode frequencies hor-
izontally by an amount which increases smoothly with frequency.
Changing one of the other model inputs like metallicity, helium
fraction, and mixing-length parameter shifts mode frequencies in
a similar way. There is also a secondary term to be considered in
the systematic uncertainty related to the signature of rapid struc-
tural variations in the oscillation frequencies (known as the helium
‘glitch’ signature). The structural variation can be seen in the first
adiabatic index (Γ1). Gough (1990) and Houdek & Gough (2007)
assumed that the helium glitch signature arises from the second
helium ionisation zone. Later studies indicate that this signature is
from the Γ1 peak between the first and second helium ionisation
zones (see Houdayer et al. 2021, for details on modelling of the
ionisation region). The helium glitch strongly correlates with the
helium fraction in the convective envelope. In Figure 2, we illus-
trate the signature of the helium glitches extracted from theoretical
models with approximately the solar mean density. The glitch signa-
tures follow the sinusoidal function with decaying amplitudes and
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Figure 2. The helium glitch features extracted with the tool Asterion
(https://github.com/alexlyttle/asterion) from theoretical radial
mode frequencies. 1st: models with different mass (𝑀 = 0.99, 1.00, and
1.01M⊙), but same metallicity ([Fe/H]= 0.0), helium fraction (𝑌= 0.26),
and mixing-length parameters (𝛼MLT = 1.9); 2nd: models with same mass
(𝑀 = 1.00M⊙), metallicity ([Fe/H]= 0.0), and mixing-length parameters
(𝛼MLT = 1.9) but different input helium fractions (𝑌= 0.28, 0.26, and 0.24);
3rd: models with same mass (𝑀 = 1.00M⊙), helium fraction(𝑌= 0.26), and
mixing-length parameters (𝛼MLT = 1.9) but different metallicity([Fe/H]=
-0.1, 0.0, +0.1); 4th: models with same mass (𝑀 = 1.00M⊙), metallic-
ity([Fe/H]= 0.0), and helium fraction (𝑌 = 0.26) but different mixing-length
parameters (𝛼MLT= 1.9, 2.1 and 2.3). All models have approximate solar
mean density.

the signature parameters (amplitude, period, and phase) change with
the fundamental inputs (Houdek & Gough 2007; Verma et al. 2019).
For the models presented here, the average frequency shift is at a
level of ∼0.1𝜇Hz, which are comparable or larger than the observed
frequency uncertainties on some Kepler stars (e.g., Li et al. 2020a)
thus should not be ignored. Hence, the systematic uncertainty can be
described with a two-term functional form. The primary term (U1)
which is a very smooth function of frequency and the secondary
term (U2) which is a fast-varying function of frequency.

As a result, we describe the model systematics as the combi-
nation of the systematic errors (E) and two systematic uncertainty
terms (U1 and U2).

2.1.2 The Application of a GP Kernel

As demonstrated above, proper descriptions of systematic errors
and uncertainties are smooth functions of frequency. This is ex-
pected because mode frequencies are highly correlated following
the so-called asymptotic relation. Thus, a white noise model for
the systematic noise term is inherently not a good model. Here we
suggest a noise model with a smooth function form which is able to
consider the correlation between mode frequencies, and we refer to
it as correlated noise model (CNM).

The Gaussian Process (GP) kernel, which is used to generate
a covariance matrix for a multivariate Normal distribution, is par-
ticularly suitable for building up the CNM. Rasmussen & Williams
(2006) consider a GP in a functional form domain whereby the con-
ditional GP acts to marginalize over all possible functional forms
weighted by the prior (i.e. the kernel) and the data. Here we chose a
Squared Exponential (SE) kernel as it follows a smooth functional
form and is able to consider the correlation between oscillation
frequencies. The SE kernel is described by the covariance matrix

𝑘 (𝜈, 𝜈′) = 𝜎2exp
(
− (𝜈 − 𝜈′)2

2𝑙2

)
. (1)

The kernel 𝑘 (𝜈, 𝜈′) models the joint variability of the Gaussian Pro-
cess random variables. It returns the modelled covariance between
each pair of frequencies 𝜈 and 𝜈′. When using the kernel to represent
the systematic uncertainties, 𝜈 are the computed mode frequencies
in the model grid and 𝜈′ are the predicted frequencies based on 𝜈.
There are two free parameters in the function: the lengthscale 𝑙 and
the noise variance 𝜎. The lengthscale describes how smooth a gen-
erated function is (length of the ‘wiggles’), and the noise variance
specifies the average distance of the function away from its mean.
Tuning these two parameters allows us to generate functional noise
forms with different smoothness and varying ranges. In sampling
process, the kernel randomly generates frequency noise (𝜈 - 𝜈′) for
a given 𝜈 following the multivariate normal distribution specified
by the lengthscale and the noise variance.

In Figure 3, we demonstrate some randomly generated noise
realizations using Eq 1 based on a set of computed model frequen-
cies (𝜈). We use a lengthscale of 5Δ𝜈 and a variance of 1.0𝜇Hz.
As seen, the predicted frequency sets (𝜈′) change in a highly cor-
related way. We also show a set of random samples from the white
noise model (WNM) for comparison. The WNM follows a Gaus-
sian distribution and has the same variance value (𝜎 = 1.0𝜇Hz).
The predicted frequencies based on the WNM include spiky fea-
tures, which obviously do not well reflect the true curvature of radial
mode frequencies. We suggest here that a CNM based on the SE
kernel is the better representation for model systematics because it is
more consistent with our prior belief in the nature of the oscillation
frequencies.

2.2 Determining the Systematic Function with the SE Kernel

Now we determine the functional form of CNM. Firstly, we describe
the systematic error kernel as

𝑘E = 𝜎2
Eexp

(
− (𝜈 + 𝜇E − 𝜈′)2

2𝑙2E

)
, (2)

where 𝜇E is the mean function, 𝜎E and 𝑙E are the error kernel
variance and the error kernel lengthscale, respectively. Secondly,
the systematic uncertainty function contains two terms (U1, and
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Figure 3. Mode frequency sets sampled with the white noise model and the
correlated noise model (based on the SE kernel in Eq. 1) on the Échelle
diagram. Black dots represent a set of mode frequencies of a stellar model
computed with MESA (Paxton et al. 2011) and GYRE (Townsend & Teitler
2013) codes. Red dots in the left panel and blue dots in the right panel
represent generated noise with the white noise model and the correlated
models plus the computed mode frequency.

U2) which represent frequency shifts between model grid points.
We therefore use two kernels to describe them, written as

𝑘U,1 + 𝑘U,2 =

𝜎2
U,1exp

(
− (𝜈 − 𝜈′)2

2𝑙2U,1

)
+ 𝜎2

U,2exp

(
− (𝜈 − 𝜈′)2

2𝑙2U,2

)
.

(3)

Here we refer to two kernels (𝑘U,1, and 𝑘U,2) as the primary
uncertainty kernel and the secondary uncertainty kernel, in which
𝜎U and 𝑙U are the uncertainty kernel variance and the uncertainty
kernel lengthscale, respectively.

Finally, we write the full expression for our CNM as

S = 𝑘E + 𝑘U,1 + 𝑘U,2. (4)

The systematic function considers the systematic errors caused by
improper physics in stellar models and the systematic uncertainty
due to the model grid steps. To apply the function to stellar mode
frequency fits, we need to choose appropriate kernel parameters
(𝜇E , 𝑙E , 𝜎E , 𝑙U,1, 𝜎U,1, 𝑙U,2, and 𝜎U,2). In the following section,
we will demonstrate how these terms are determined in an actual
fitting process.

2.3 Determining Kernel Parameters

We demonstrate the determination of the kernel parameters of the
CNM in the case of the Sun-as-a-star. We use the same stellar model
grid adopted by Lyttle et al. (2021). The grid covers parameter
ranges (steps) of 0.8 – 1.2 (0.01) M⊙ for mass (𝑀), -0.5 – +0.5 (0.1)
for metallicity (M/H), 0.24 – 0.32 (0.02) for initial helium mass
fraction (𝑌 ), and 1.5 – 2.5 (0.2) for the mixing-length parameter
(𝛼MLT). Observed frequencies of the Sun are taken from the BiSON
network (Howe et al. 2017).

2.3.1 Free parameters in the Systematic Error Kernel

Here we discuss the determination of the mean function (𝜇E ), er-
ror kernel lengthscale (𝑙E ), and error kernel variance (𝜎E ). The
systematic error kernel is normally determined from frequency dif-
ferences between observations and the best-fitting model. However,
the best-fitting model is unknown to us a priori. Instead, we use
specific knowledge of model errors of similar stars to characterise
the systematic error and determine three adjusted parameters. In
what follows, we justify our choices but note that the method itself
could incorporate alternative choices.

Previous studies of the surface correction on stars similar to
the Sun provide some useful references for model errors of the Sun.
Compton et al. (2018) estimated the surface terms of 66 Kepler
main-sequence stars. For stars within a parameter range of 𝑇eff =
5777 ± 250K and log 𝑔 = 4.44 ± 0.5dex, the relative surface correc-
tions at 𝜈max (𝛿𝜈(𝜈max)) vary from -0.0015𝜈max to -0.0045𝜈max.
We use this prior information in the form of a weight 𝑤𝜈max given
by a super Gaussian function with the exponent raised to a power
of 10 (flat-top Gaussian function)

𝑤𝜈max = exp ©­«−
(
(𝛿𝜈(𝜈max) − 𝜇𝜈max )2

2𝜎2
𝜈max

)10ª®¬ . (5)

Here, 𝜇𝜈max and 𝜎𝜈max are -0.003𝜈max and 0.0015𝜈max, respec-
tively. This likelihood function returns a weight that is flat when
𝛿𝜈(𝜈max) is in the 𝜇𝜈max ± 𝜎𝜈max range, and quickly drops toward
zero at 𝜇𝜈max ± 1.5𝜎𝜈max . Moreover, previous studies (Ball & Gi-
zon 2014; Compton et al. 2018; Li et al. 2020b) have also inferred
that the model frequency errors at the low-frequency range, below
∼0.7𝜈max, are not as significant as those in high-frequency range.
In sun-like stars, the low-frequency-range errors are on average ap-
proximately zero with a small amount of 0.001𝜈max spread. This
can be used as another constraint and we describe it as a Gaussian
function as

𝑤low−𝜈 = exp ©­«−
�𝛿𝜈(𝜈obs)

2

2𝜎2
low−𝜈

ª®¬ , (for 𝜈obs ≤ 0.7𝜈max), (6)

where �𝛿𝜈(𝜈obs) represents the median of frequency offsets for given
observed frequencies, 𝜎low−𝜈 is adjusted and defines for how much
the �𝛿𝜈(𝜈) deviating from zero is sensible. According to earlier stud-
ies (Ball & Gizon 2014; Compton et al. 2018), we adopt 𝜎low−𝜈 =
0.001𝜈max.

Now we demonstrate how these two functions are used to char-
acterise the model errors of the Sun. Firstly, we compare observed
and model frequencies to calculate frequency differences. We then
use Eq. 5 and 6 to obtain a joint weight (𝑤low−𝜈 ·𝑤𝜈max ) for each
model. As a simple example, we use stellar models on an 1M⊙
evolutionary track to demonstrate this estimation in the left panel
of Figure 4. When the joint weight of each model is obtained, we
find a couple of potential good-fitting models (with weight value
larger than 0.01) on this track and plot their frequency differences
as a function of the frequency. The weight distribution indicates the
model error is about -5𝜇Hz at 3,000 𝜇Hz and goes down to about
-10𝜇Hz at 4,000𝜇Hz. Now we could fit a cubic polynomial func-
tion to all frequency differences in Figure 4 against the frequency
weighted by the joint weight to estimate the mean of frequency
offsets (the solid line). Moreover, we calculate the weighted stan-
dard deviations of frequency differences (as illustrated by the grey
shade). The fitted polynomial function represents the mean estimate
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Figure 4. Left: The determination of mean function (𝜇E ) and variation (𝜎E ) of the systematic error kernel (E) while fitting to the Sun-as-a-star. Dots are
frequency differences between observed solar data (from BiSON) and theoretical models. These models are from the same evolutionary track with 𝑀 = 1.00
M⊙ , 𝑌 = 0.26, [Fe/H]= 0.0, and 𝛼MLT = 2.1. The colour code indicates the joint weight determined with the two likelihood functions (Eq. 5 and 6). Note that
we use all models on the track to determine the mean function and variation but only plot eight models with a joint weight larger than 0.01. The solid line
represents the polynomial function that fits the frequency differences (weighted by the joint weight), and we use this as the mean function. The grey shade
indicates the weighted standard deviation which is adopted as the variance. Right: Five random draws from the systematic error kernel. The mean function and
variance are determined with the method demonstrated in the left panel, and the error kernel lengthscale is 5Δ𝜈.

of systematic error in these theoretical models, and the standard de-
viation infer the range for it to vary. We thus use them as the mean
function and noise variance in the systematic error kernel. In our
CNM, the lenghtscale determines the degree of correlation between
mode frequency noise. By inspecting the surface correction results
obtained on the Kepler LEGACY sample (Compton et al. 2018), we
notice that the frequency offsets between model and observations
mostly follow slowly-varying smooth functions (higthly-correlated).
This is to say the error kernel lengthscale ought to be much larger
than the large separation. We test a selection of lengthscale values
and compare the kernel predictions with the surface correction re-
sults. We find a suitable lengthscale of 5Δ𝜈 because the kernel with
this lengthscale value well reproduces both the very smooth surface
terms expected for stars with approximately one solar mass and the
slightly curved ones, expected for the more massive F-type stars(see
Fig. 8 in Compton et al. 2018). Using the mean function, variance,
and lengthscale obtained above, we illustrate some random draws
from the systematic error kernel in the right panel of Figure 4.

2.3.2 Free Parameters in the Uncertainty Kernels

Now we determine the lengthscales and variances of the two un-
certainty kernels. The two lengthscales and variances are different
because the primary kernel describes the general frequency change
(a very smooth function of frequency) and the secondary kernel
corresponds to the helium glitch signatures (a fast-varying function
of frequency). The uncertainty kernels represent the systematic un-
certainty at a grid point and their free parameters depend on the
local frequency changes between the point and its neighbouring
points. Thus, the free parameters in the uncertainty kernels vary for
different grid points.

Here we use a simple method to determine free parameters for
the grid point at 𝑀 = 1M⊙ , [Fe/H] = 0.0,𝑌init = 0.26,𝛼MLT = 2.1, and

𝜌 = 𝜌⊙ . A model grid always contains multiple input dimensions.
For the grid in this work, the independent inputs are mass, initial
metallicity, initial helium abundance, and initial mixing-length pa-
rameters. We therefore inspect the frequency changes for each fun-
damental input (see details in Figure A1). We find that the primary
uncertainty kernel needs a large lengthscale to make it act as a very
smooth function. We test different lengthscale from 10Δ𝜈 to 30Δ𝜈
and adopt 𝑙U,1 =20Δ𝜈 because it best recovers the general shape of
frequency changes in Figure A1. On the other hand, we use a small
lengthscale for the secondary uncertainty kernel to match the quick
variation of the glitch signature. By inspecting the second-order
variations in Figure A1, we notice that the lengths of the ‘wiggles’
are mostly between 2–3 radial orders. The choice of lengthscale
needs to be in a similar range to reproduce the fast variations. We
hence test different lengthscale values from 1Δ𝜈 to 4Δ𝜈 and find
the kernel with 𝑙U,2 = 2Δ𝜈 best recovers the test case. Considering
the frequency resolution for all input dimensions, we find an aver-
age varying range is ∼0.75𝜇Hz at 0.5𝜈max, ∼1.5𝜇Hz at 𝜈max, and
∼2.0𝜇Hz at 1.5𝜈max. The variance is hence frequency dependent
and we use 𝜎U,1 = 1.5𝜈obs/𝜈max. The secondary kernel variance
is also frequency-dependent given that the signature of the helium
glitch is a damped sine wave. As shown in Figure 2, the secondary
uncertainty is up to ∼0.4𝜇Hz at 0.5𝜈max and gradually reduces to ∼
0 at 1.5𝜈max. We therefore set up the secondary variance as 𝜎U,2 =
0.1(𝜈max/𝜈obs)2. Note that the method of measuring frequency dif-
ferences and estimating the kernel variation is fairly rough. Firstly,
the kernel variation is not uniform through a model grid. Secondly,
we measure frequency changes in each input dimension indepen-
dently, but the four fundamental inputs highly degenerate. The grid
resolution of oscillation frequency and the free parameters of the un-
certainty kernels should be solved as multiple-dimesions problems.
We leave these in future studies.

In Figure 5, we use the two uncertainty kernels to generate some
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Figure 5. Generated frequency noise using the primary uncertainty kernel
(top), the secondary uncertainty kernel (middle), and the combination of
two kernels (bottom). The primary kernel has a lengthscale of 20Δ𝜈 and
a frequency-dependent variance of 1.5𝜈obs/𝜈max. The secondary kernel,
which describes the change in glitch signature, has a lengthscale of 2Δ𝜈
and a variance of 0.1(𝜈max/𝜈obs)2. In each panel, we demonstrate 10 ran-
domly generated sets of frequency noise, i.e., the (𝜈 - 𝜈′) in the systematic
uncertainty kernel. Note that we use observed solar frequencies as 𝜈 when
generating the noise in this plot.

frequency noise as a function of frequency. As seen, the primary un-
certainty kernel generates very smooth and highly correlated noise,
and what the secondary uncertainty kernel provides is similar to
the damped sine wave. The combination of the two kernels gives
reasonable predictions of frequency noise between stellar model
grids.

2.4 Likelihood Function

In this section, we discuss the likelihood function that works for
the CNM fitting. We start with the likelihood function used in
traditional methods. When no systematics are considered and errors
on the observed frequencies are assumed to be uncorrelated, it is
normally written as

L = exp

(
− (𝜈obs − 𝜈mod + 𝛿𝜈sc)2

2𝜎2
𝜈obs

)
, (7)

where the subscripts ‘obs’ and ‘mod’ stand for the observed and the
model quantities. The term 𝛿𝜈sc represents the surface correction to
model frequencies. When we consider model systematic uncertain-
ties and treat them as white noises, the likelihood function becomes

LWNM = exp

(
− (𝜈obs − 𝜈mod + 𝛿𝜈sc)2

2(𝜎2
𝜈obs + 𝜎2

𝜈sys )

)
, (8)

where 𝜎𝜈sys represents the white systematic noise.
In Figures 4 and 5, we generate 𝜈′ for justifying our choices of

kernel parameters. In the fitting process, generating 𝜈′ with some
samplers (e.g., MCMC) and fitting 𝜈′ to observations is applicable
but computationally expensive. In the fitting procedure, we could
simply use likelihood functions instead of sampling 𝜈′. Because a
GP kernel is essentially a covariance matrix for a multivariate Nor-
mal distribution, whose probability function follows a multivariate
normal distribution. Thus, we can describe CNM as a multivariate
normal distribution in the fits and write the likelihood function as

LCNM,N ∝ exp
(
− 1

2
(𝜈mod + 𝜇E − 𝜈obs )𝑇

∑︁
−1 (𝜈mod + 𝜇E − 𝜈obs )

)
.

(9)

The subscript ‘N’ stands for the Normal distribution, and the
∑

represents the covariance matrix based on the SE kernel∑︁
= 𝑘com (𝜈mod, 𝜈mod) + 𝐼 · 𝜎2

𝜈obs . (10)

The term 𝑘com (𝜈mod, 𝜈mod) is the combination of three kernels
which describe correlated noise. The term 𝐼 · 𝜎2

𝜈obs (𝐼 is the iden-
tity matrix) describes the observed uncertainty of mode frequen-
cies which should be white noise. It should be noted that the
𝑘com (𝜈mod, 𝜈mod) term does not contain 𝜇E in the systematic er-
ror kernel as we already consider 𝜇E when comparing model and
observed frequencies as shown in Eq. 9.

Moreover, we could consider in addition some potential errors
which are unknown or unpredictable. In some cases, a few per cent
of observed mode frequencies can be misreported or poorly mea-
sured. Some noisy spikes in the oscillation power spectrum could be
misclassified as modes; mixed modes close to the ℓ = 0 ridge could
be misidentified as radial modes; and frequency uncertainties could
be underestimated for un-resolved modes. Due to these additional
errors, the probability distribution should contain a small fraction
of ‘exceptions’. The 𝑡-distribution is a good option for dealing with
these cases. The probability density function of the 𝑡-distribution
is similar to the normal distribution but has long and fat tails at
both sides. The probability in the tail region represents the chance
of a mode frequency being misreported. The likelihood function
following the multivariate t-distribution is written as

LCNM,t ∝(
1 + 1

𝑑
(𝜈mod − 𝜈obs )𝑇

∑︁
−1 (𝜈mod − 𝜈obs )

)−(𝑑+𝑝)/2
.

(11)

The subscript ‘𝑡’ represents the 𝑡-distribution, 𝑝 is the dimension
of the vector of frequencies, and 𝑑 is the number of degrees of
freedom that determines the possibility of incorrect measurement.
The degrees of freedom 𝑑 = 2 corresponds to a ∼10% probability
in the tail regions (outside 3 times half width at half maximum) and
we adopt this value in the following analysis.

3 APPLICATION IN ASTEROSEISMIC FITTING

3.1 Fitting a fake model star

To test whether this new fitting method better recovers the truths
of stellar parameters. We fit to a fake model star which has simi-
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lar surface properties to the Sun. The fake star is computed with
same input physics but with off-grid input fundamental parameters,
which are M = 1.005M⊙ , 𝑌 = 0.256, 𝛼MLT = 1.99. The true age,
radius, and mean density are 𝜏 = 3.99Gyr, 𝑅 = 1.007R⊙ , and 𝜌

= 0.984𝜌⊙ , respectively. Classical ‘observed’ quantities are 𝑇eff =
5771K, log 𝑔 = 4.43dex, [Fe/H] = -0.05dex. We adopt observed
uncertainties of ±50K for 𝑇eff, ±0.1dex for log 𝑔, and ±0.1dex for
[Fe/H]. Radial mode frequencies for 𝑛 = 12 – 30 are selected as seis-
mic constraints. The global seismic parameters are 𝜈max = 3058𝜇Hz
(calculated with the scaling relation given by Kjeldsen & Bedding
(1995)) and Δ𝜈 = 134.4𝜇Hz (from the linear fitting of radial mode
frequencies). A uniform observed uncertainty of 𝜎𝜈obs = 0.5𝜇Hz
for mode frequencies is applied. Regarding the free parameters of
the kernels, we use fixed parameters determined in Sections 2.3.2
and 2.3.1 in all following tests.

Because the star is a fake model star, no model error is in-
cluded. The systematic function only contains the uncertainty term.
We consider three cases for comparison. We do not consider the
systematics for the first case and use Eq. 7 as the likelihood func-
tion. The second case includes the white systematic noise and Eq. 8
as the likelihood function. In the third case, we apply the correlated
noise model and use the multivariate normal distribution (Eq. 9)
to determine the likelihood function. Note that we use the same
Maximum Likelihood Estimation (MLE) to fit classical observed
frequencies in all these three cases. The posterior distribution is the
joint probability of likelihoods from the classical and the seismic
fits.

We start with the first and the second cases which either ig-
nore model systematics or treat them as white noise. Frequency-
dependent systematic uncertainties as 𝜎sys = 1.5𝜈obs/𝜈max are used
in the second case. Figure 6 shows posterior distributions of five
fundamental parameters. Posterior distributions for the first case
are spiky because the model grid is significantly under-sampled,
leading to poor accuracy and precision. When the white systematic
uncertainty is considered, we obtain continuous posterior distribu-
tions and more reliable estimates of stellar parameters. We then
apply the CNM as described in Section 2 in the fits and illustrate
the fitting results at the bottom in Figure 6. Comparing with above
traditional methods, we find significant improvements in estimated
precisions for mass, radius, and age because CNM is a more prin-
cipled statistical treatment for the systematics.

3.2 Fitting a realistic fake star

As a further test of our method, we make the above fake star more
realistic by adding the surface term and some random observed
noise to oscillation frequencies. To be specific, we refer to it as
the ‘realistic fake star’. We add the solar surface term using the
correction formula given by Kjeldsen et al. (2008) with the two
adjusted parameters as 𝑎 = -4.73 and 𝑏 = 4.90. Some random noise
following the Gaussian distribution (𝜎obs = 0.5𝜇Hz) is added to the
frequencies. We generate several sets of ‘observed’ frequencies and
choose the one with a few frequencies obviously deviating from
the asymptotic relation (as shown on the top left in Figure 7). This
is to mimic the case of poorly measured modes. All the observed
quantities are the same except Δ𝜈 because adding the surface term
changes its value. We fit the new mode frequencies with a linear
function and obtain an observed Δ𝜈 of 133.4𝜇Hz.

The full systematic function is applied in the fitting. We first
fit to three classical observed quantities (𝑇eff, log 𝑔 and [Fe/H])
using the MLE method and select models with likelihood greater
than 10−4. We then determine the mean function (𝜇) and the vari-

ance (𝜎E ) for the error kernel (KE ) with the selected models. As
illustrated on the top right in Figure 7, we calculate the prior like-
lihoods with Eqs 5 and 6 and calculate the weighted median and
the weighted standard deviation for observed frequencies. The un-
certainty kernel is defined in the same way as in the fits to the fake
model star.

We fit models to the data and calculate the likelihood with the
multivariate Normal distribution (Eq 9) as well as the multivariate
𝑡-distribution (Eq. 11). We show posterior distributions for the two
cases at the bottom of Figure 7. Estimated mass, radius, and age
for both cases are consistent with the input parameters. Comparing
results with two different likelihood functions, we find better age
precision from the fits with multivariate 𝑡-distribution but no ob-
vious improvements for estimated mass and radius. From the joint
distributions, we find larger age spreads against the helium fraction
and the mixing-length parameter for the Normal-distribution case.
This is because those poorly-measured modes form some small-
scale curvatures which affect the glitch signature. This is to say,
those bad modes weaken the indications of mode frequencies to
the helium abundance. The Normal distribution likelihood func-
tion does not consider any exceptions in oscillation frequencies and
hence treat those mode shifts as helium glitches, leading to larger
spreading in the posterior of the helium fraction. On the other hand,
the likelihood function with 𝑡-distribution can properly interpret
them as potential errors and hence avoid over-explaining the data.

4 DISCUSSIONS AND CONCLUSIONS

We propose a correlated noise model based on a Gaussian Process
kernel (covariance function) to better describe model systematics in
stellar models constrained by asteroseismic mode frequencies. The
work is motivated by poor treatments of model systematics in theo-
retical mode frequencies which undermine modelling solutions. The
model systematics include errors caused by improper physics and
uncertainties due to the grid resolution. We use a GP kernel because
it has infinitely many derivatives in its prior to represent all pos-
sible frequency variations between the points of a model grid. We
show that this CNM generates mode frequencies that better match
our expectations than the white noise model (Figure 3). In prac-
tice, we describe the systematics as a mean function of frequency
offsets and several kernels. We manage to use these kernels to repro-
duce frequency variations at different scales by tuning the two free
parameters, i.e., kernel lengthscale and kernel variance. We apply
the method to fitting a simulated set of model frequencies. In this
work, fits with this new CNM outperform the other two traditional
methods which either ignores the systematics or treat them as white
noises. We also suggest using the 𝑡-distribution likelihood function
in the fitting to cope with potentially misreported mode frequen-
cies. Our testing shows that the 𝑡-distribution likelihood function
better recovers the properties of the simulated star compared with
the Normal-distribution.

The new fitting approach includes a better description for the
model systematics and hence improves the reliability of modelling
solutions. This is a novel alternative to account for the effect of the
limited resolution of the grid. It mitigates the issues in seismic mod-
elling, as found by Cunha et al. (2021), that when the errors on the
frequencies are not inflated the uncertainties on the inferred stel-
lar properties are often underestimated. We also treat the surface
term (model errors) as a mean function plus a covariance func-
tion instead of parameterising a specific correction formula. The
method can be applied to any established model grid. It is fast and
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Figure 6. Probability distributions of five star parameters of the fake star on the Corner (Foreman-Mackey 2016) plot. Results include three cases which are
fits without any model systematics (top left), with white systematic noise (top right), with a correlated noise model (bottom). The input values of the five stellar
parameters are indicated by blue solid lines.

statistically-sound in the grid-based framework and hence suitable
for modelling a large sample of stars. The method could be useful
for the PLATO stellar analysis pipeline (Gent et al. 2021), which is
developed for fast determinations of stellar parameters in the core
program of the mission. This work only demonstrates the applica-
tion to radial modes, but the method is extendable to all acoustic
modes and also possibly to mixed modes.

There are also some limitations. Although the correlated noise
model is a reasonable prediction of model systematics, fitting with
it is still not as good as interpolating the grid (assuming the error
on interpolation is significantly smaller than the frequency errors).
The fitting approach is therefore not the best option when precision
is essential. The second limitation is in the determination of the

mean function appearing in the systematic error kernel. It relies
on previous studies on similar stars to give reliable priors. Here
we obtain a good mean function for the example star, because its
parameters fit in many well-studied Sun-like stars. To apply this
method to other types of stars, a well-studied star sample that covers
wide parameter ranges is required for estimating the mean function.
Moreover, we note that the functional form of kernels can change for
different input physics or free parameters of model grids. Analysing
model systematics is required before applying the method to model
grids. In future work, we will introduce additional machine-learning
tools to learn the model systematics across the HR diagram to
determine the functional form in a robust way. This will make
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Figure 7. Fitting procedure for the ‘realistic fake star’. Top left: ‘observed’ radial mode frequencies (blue dots) generated with model frequencies (black dots)
plus the solar surface term and some random noises. Top right: the determination of mean function of model errors (𝜇 in Eq. 4). Dots indicates frequency
offsets between models and observations, and colour code represent the joint probability of two priors (Llow−𝜈 · L𝜈max ) of each model. Black solid line and
grey shade are weighted median and weighted standard deviation of frequency offsets. Black dashed line stands for true model errors. Bottom left: posterior
distributions of five stellar parameters based on the multivariate Normal distribution (Eq. 9) on the Corner plot. Truths are presented by blue lines. Bottom
right: same as the left, but for the the multivariate 𝑡-distribution (Eq. 9) case.

the method applicable for many stars without customising the GP
kernels.
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Figure A1. Mode frequency changes between consecutive grid points in four input dimensions. All presented models have approximately solar mean density.

APPENDIX A:

A1 Inspecting frequency differences between the grid points

There are two free parameters in the RBF kernel, i.e., the lengthscale and the variance. Proper choices of kernel parameters are the key to
the noise model. We inspect the frequency change between consecutive grid points to determine the kernel parameters. We present frequency
differences between models with approximately the solar mean density in Figure A1. As shown, frequency differences can be described
as a smooth function of the frequency plus a damped sine function (the signature of the helium glitch). The systematic uncertainty hence
contains two kernels. The primary kernel should have a large lengthscale and a frequency-dependent variance for each input dimension. The
secondary kernel represents the signature of the helium glitch. It hence has a relatively small lengthscale and some variances decreasing with
the frequency.
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